Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (554 KB)

Title:

Nitrogen and Phosphorus release from mixed litter layers is lower than predicted from single species decay.

Author: Ball, Becky A.; Bradford, Mark A.; Hunter, Mark D.;

Date: 2009

Source: Ecosystems doi: 10.1007/s10021-008-9208-2.

Publication Series: Scientific Journal (JRNL)

Description:

Ecosystem-level nutrient dynamics during decomposition are often estimated from litter monocultures. If species effects are additive, we can statistically predict nutrient dynamics in multispecies systems from monoculture work, and potential consequences of species loss. However, if species effects are dependent on interactions with other litter species (that is, non-additive), predictions based on monoculture data will likely be inaccurate. We conducted a 3-year, full-factorial, mixed-litter decomposition study of four dominant tree species in a temperate forest and measured nitrogen and phosphorus dynamics to explore whether nutrient dynamics in mixtures were additive or non additive. Following common approaches, we used litterfall data to predict nutrient dynamics at the ecosystem-level. In mixtures, we observed non-additive effects of litter  mixing on nutrient dynamics: the presence of nutrient-rich species in mixture facilitated nutrient release, whereas nutrient-poor species facilitated nutrient retention. Fewer nutrients were released from mixtures containing high-quality litter, and more immobilized from mixtures containing low-quality litter, than predicted from monocultures, creating a difference in overall nutrient release between predicted and actual dynamics in litter mixtures. Nutrient release at the ecosystem-level was greatly overestimated when based on monocultures because the effect of species interactions on nutrient immobilization was not accounted for. Our data illustrate that the identity of species in mixtures is key to their role in non-additive interactions, with repercussions for mineral nutrient availability and storage. These results suggest that predictions of ecosystem-level nutrient dynamics using litter monoculture data likely do not accurately represent actual dynamics because the effects of litter species interactions are not incorporated.

Keywords: ecosystem function, decomposition, nutrient dynamics, litter nitrogen, litter phosphorus, litter mixtures, species diversity, species composition, species loss, biodiversity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ball, Becky A.; Bradford, Mark A.; Hunter, Mark D. 2009. Nitrogen and Phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems. 12: 87-100. doi: 10.1007/s10021-008-9208-2.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.