Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.6 MB)

Title: Coupled influences of topography and wind on wildland fire behaviour

Author: Linn, Rodman; Winterkamp, Judith; Edminster, Carleton; Colman, Jonah J.; Smith, William S.;

Date: 2007

Source: International Journal of Wildland Fire. 16: 183-195.

Publication Series: Scientific Journal (JRNL)

Description: Ten simulations were performed with the HIGRAD/FIRETEC wildfire behaviour model in order to explore its utility in studying wildfire behaviour in inhomogeneous topography. The goal of these simulations is to explore the potential extent of the coupling between the fire, atmosphere, and topography. The ten simulations described in this paper include five different topographies, each run with two different ambient wind speeds of 6 and 12ms-1. The five topologies explored are: an idealised hill (which serves as the base centerline for the other topographies), two variations of the hill with lateral gradients downwind from the ignition line (one sloping up from the 'hill' at the centerline to form an upward sloping canyon parallel to the ambient wind, and the other sloping down from the centerline to form a ridge parallel to the ambient flow), one with a second hill upwind of the ignition line such that the fire is ignited in the bottom of a canyon that runs perpendicular to the ambient wind, and finally a flat terrain. The four non-trivial topographies have the same profile along the centerline downwind of the ignition line to help assess the impacts of topographic gradients that are perpendicular to the ambient wind. It is hoped that analysis of these simulations will help reveal where point-functional models are sufficient, where topographically modified wind fields are needed, and where fully coupled fire and transport models are necessary to properly describe wildfire behaviour.

Keywords: fire propagation, FIRETEC, slope effects

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Linn, Rodman; Winterkamp, Judith; Edminster, Carleton; Colman, Jonah J.; Smith, William S. 2007. Coupled influences of topography and wind on wildland fire behaviour. International Journal of Wildland Fire. 16: 183-195.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.