Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.1 MB)

Title: Nitrate variability in hydrological flow paths for three mid-Appalachian forested watersheds following a large-scale defoliation.

Author: Riscassi, Amy L.; Scanlon, Todd M.;

Date: 2009

Source: Journal of Geophysical Research doi: 10.1029/2008JG000860.

Publication Series: Scientific Journal (JRNL)

Description: [i] Nitrate (NO3-) leakage from forested watersheds due to disturbance is a well documented but not well understood process that can contribute to the degradation of receiving waters through eutrophication. Several studies have shown that large-scale defoliation and deforestation events in small forested watersheds in the eastern United States cause immediate and dramatic increases in NO3- flux to steams, with large differences in recovery time. Water quality and discharge data collected from 1992 to 2004 following a large-scale gypsy moth defoliation were used to investigate hydrological controls on long-term NO3- leakage from three forested watersheds in Shenandoah National Park, Virginia. During storm events, a conventional two-component hydrograph separation in conjunction with an inverse solution technique was employed to determine the concentrations of NO3- in groundwater and soil water. Following defoliation, groundwater NO3- concentrations declined exponentially with a distinct seasonal pattern. A rank-order relationship between the rate constants associated with the exponential declines in groundwater NO3-" concentrations and groundwater recession constants indicates a hydrological control on long-term watershed recovery for these defoliated systems. Comparisons to deforested systems in Hubbard Brook, New Hampshire, and Coweeta, North Carolina, indicate hydrological controls are similarly present. Biogeochemical differences, however, need to be considered to account for the more attenuated recovery observed in defoliated systems. No long-term trend was found in the model-derived soil water NO J concentrations, which suggests the presence of some form of rate limitation on the transformation of the nitrogen pool introduced during the disturbance and/or reduced nutrient uptake due to tree mortality.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Riscassi, Amy L.; Scanlon, Todd M. 2009. Nitrate variability in hydrological flow paths for three mid-Appalachian forested watersheds following a large-scale defoliation. Journal of Geophysical Research. 114: G02009, doi: 10.1029/2008JG000860.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.