Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (383 KB)

Title: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)

Author: Martinez, Diego; Berka, Randy M.; Henrissat, Bernard; Saloheimo, Markku; Arvas, Mikko; Baker, Scott E.; Chapman, Jarod; Chertkov, Olga; Coutinho, Pedro M.; Cullen, Daniel;

Date: 2008

Source: Nature biotechnology. Vol. 26, no. 5: pages 553-560.

Publication Series: Miscellaneous Publication

Description:

Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of  T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.

Keywords: Cellulase, microbial metabolism, regulation, enzymes, industrial applications, biotechnology, gene expression, chemical engineering, alcohol, biodegradation, Trichoderma reesii, genetic engineering, nucleotide sequence, genomes, fungi, polysaccharides, biosynthesis, molecular genetics, Hypocrea jecorina, decay fungi, hemicellulose

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Martinez, Diego; Berka, Randy M.; Henrissat, Bernard; Saloheimo, Markku; Arvas, Mikko; Baker, Scott E.; Chapman, Jarod; Chertkov, Olga; Coutinho, Pedro M.; Cullen, Daniel, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina). Nature biotechnology. Vol. 26, no. 5: pages 553-560.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.