Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (289 KB)

Title: Relative in vitro wood decay resistance of sapwood from landscape trees of southern temperate regions

Author: Baietto, Manuela; Wilson, A. Dan.;

Date: 2010

Source: HortScience, Vol. 45(3): 401-408

Publication Series: Miscellaneous Publication

Description: The development of wood decay caused by 12 major root-rot and trunk-rot fungi was investigated in vitro with sapwood extracted from nine ornamental and landscape hardwood and conifer species native to southern temperate regions of North America, Europe, and the lower Mississippi Delta. Wood decay rates based on dry weight loss for 108 host tree–wood decay fungi combinations were compared at 21 8C over 1-year and 2-year incubation periods in the absence of tree-resistance mechanisms. Strains of Armillaria mellea, Ganoderma lucidum, and Heterobasidion annosum exhibited the highest decay potential in most tree species tested. The order of fungi causing the greatest decay varied over time as a result of temporal changes in decay-rate curves. Relative wood durability or resistance to decay generally was greater in gymnosperm than in angiosperm wood types. Quercus nuttallii, Fraxinus pennsylvanica, and Quercus lyrata sustained the highest levels of decay by all fungi. Northern white cedar (Thuja occidentalis) sapwood was most resistant to decay by all rot-fungi tested, sustaining only limited weight loss after 1 and 2 years of decay, although sapwood of Pinus taeda, Liquidambar styraciflua, and Platanus occidentalis had relatively low levels of decay after 2 years. These results in combination with data from portable decay-detection devices provide useful information for the management of tree breakages or failures resulting from wood decay fungi in hazardous landscape trees. Some potential landscaping applications for tree evaluations, risk assessments, and selections for tree-replacement plantings are discussed.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Baietto, Manuela; Wilson, A. Dan. 2010. Relative in vitro wood decay resistance of sapwood from landscape trees of southern temperate regions. HortScience, Vol. 45(3): 401-408

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.