Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.9 MB)

Title: Predicting forest successional stages using mutitemporal Landsat imagery with forest inventory and analysis data

Author: Liu, Weiguo; Song, Conghe; Schroeder, Todd A.; Cohen, Warren B.;

Date: 2008

Source: International Journal of Remote Sensing

Publication Series: Scientific Journal (JRNL)

Description: Forest succession is an important ecological process that has profound biophysical, biological and biogeochemical implications in terrestrial ecosystems. Therefore, information on forest successional stages over an extensive forested landscape is crucial for us to understand ecosystem processes, such as carbon assimilation and energy interception. This study explored the potential of using Forest Inventory and Analysis (FIA) plot data to extract forest successional stage information from remotely sensed imagery with three widely used predictive models, linear regression (LR), decision trees (DTs) and neural networks (NNs). The predictive results in this study agree with previous findings that multitemporal Landsat Thematic Mapper (TM) imagery can improve the accuracy of forest successional stage prediction compared to models using a single image. Because of the overlap of spectral signatures of forests in different successional stages, it is difficult to accurately separate forest successional stages into more than three broad age classes (young, mature and old) with reasonable accuracy based on the age information of FIA plots and the spectral data of the plots from Landsat TM imagery. Given the mixed spectral response of forest age classes, new approaches need to be explored to improve the prediction of forest successional stages using FIA data.

Keywords: Landsat, secondary succession

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Liu, Weiguo; Song, Conghe; Schroeder, Todd A.; Cohen, Warren B. 2008. Predicting forest successional stages using mutitemporal Landsat imagery with forest inventory and analysis data. International Journal of Remote Sensing. 29(13): 3855-3872.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.