Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.2 MB)

Title: The western arctic linkage experiment (WALE): overview and synthesis

Author: McGuire, A.D.; Walsh, J.; Kimball, J.S.; Clein, J.S.; Euskirdhen, S.E.; Drobot, S.; Herzfeld, U.C.; Maslanik, J.; Lammers, R.B.; Rawlins, M.A.; Vorosmarty, C.J.; Rupp, T.S.; Wu, W.; Calef, M.;

Date: 2008

Source: Earth Interactions. 12(7): 1-13

Publication Series: Scientific Journal (JRNL)

Description: The primary goal of the Western Arctic Linkage Experiment (WALE) was to better understand uncertainties of simulated hydrologic and ecosystem dynamics of the western Arctic in the context of 1) uncertainties in the data available to drive the models and 2) different approaches to simulating regional hydrology and ecosystem dynamics. Analyses of datasets on climate available for driving hydrologic and ecosystem models within the western Arctic during the late twentieth century indicate that there are substantial differences among the mean states of datasets for temperature, precipitation, vapor pressure, and radiation variables. Among the studies that examined temporal trends among the alternative climate datasets, there is not much consensus on trends among the datasets. In contrast, monthly and interannual variations of some variables showed some correlation across the datasets. The application of hydrology models driven by alternative climate drivers revealed that the simulation of regional hydrology was sensitive to precipitation and water vapor differences among the driving datasets and that accurate simulation of regional water balance is limited by biases in the forcing data. Satellite-based analyses for the region indicate that vegetation productivity of the region increased during the last two decades of the twentieth century because of earlier spring thaw, and the temporal variability of vegetation productivity simulated by different models from 1980 to 2000 was generally consistent with estimates based on the satellite record for applications driven with alternative climate' datasets. However, the magnitude of the fluxes differed by as much as a factor of 2.5 among applications driven with different climate data, and spatial patterns of temporal trends in carbon dynamics were quite different among simulations. Finally, the study identified that the simulation of fire by ecosystem models is particularly sensitive to alternative climate datasets, with little or no fire simulated for some datasets. The results of WALE identify the importance of conducting retrospective analyses prior to coupling hydrology and ecosystem models with climate system models. For applications of hydrology and ecosystem models driven by projections of future climate, the authors recommend a coupling strategy in which future changes from climate model simulations are superimposed on the present mean climate of the most reliable datasets of historical climate.

Keywords: Arctic, Boreal, Carbon, Climate, Ecosystem models, Hydrology, WALE, Western Arctic Linkage Experiment

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


McGuire, A.D.; Walsh, J.; Kimball, J.S.; Clein, J.S.; Euskirchen, S.E.; Drobot, S.; Herzfeld, U.C.; Maslanik, J.; Lammers, R.B.; Rawlins, M.A.; Vorosmarty, C.J.; Rupp, T.S.; Wu, W.; Calef, M. 2008. The western arctic linkage experiment (WALE): overview and synthesis. Earth Interactions. 12(7): 1-13.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.