Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.3 MB)

Title: Identification and characterization of the ecdysteroid UDPglucosyltransferase gene of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus

Author: Riegel, Christopher I.; Lanner-Herrera, Carita; Slavicek, James M.;

Date: 1994

Source: Journal of General Virology. 75: 829-838.

Publication Series: Scientific Journal (JRNL)

Description: We have located, cloned, sequenced and characterized the ecdysteroid UDP-glucosyltransferase gene (egt) gene from the baculovirus Lymantria dispar multinucleocapsid nuclear polyhedrosis virus,(LdMNPV), which is specific for the gypsy moth (L. dispar). The egt gene from the related baculovirus Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) disrupts the hormonal balance of the host larva by galactosylating ecdysone, which prevents moulting. The location of the LdMNPV egt gene, determined by hybridization analysis using a cloned coding segment of the AcMNPV egt gene, was mapped to between 79.1 and 80.2 map units on the viral genome. This region contains an open reading frame of 1464 nucleotides capable of encoding a 55K polypeptide. This predicted protein exhibits a 42% amino acid identity with the AcMNPV egt polypeptide. Transcripts of the egt gene were analysed by Northern blot and primer extension. The egt gene is transcribed from approximately 12 to 48 h, and maximally at about 16h post-infection. Transcription occurred in the presence of aphidicolin, a viral DNA synthesis inhibitor, but not in the presence of cycloheximide, a protein synthesis inhibitor. Therefore the LdMNPV egt gene is classified as a delayed early gene. The egt gene is transcribed in a clockwise direction with respect to the circular map, and transcription initiates at a single site. Comparisons between the two baculoviral egt proteins and mammalian UDP-glucuronosyltransferases reveal areas which are conserved between the mammalian and baculoviral genes, as well as areas that are only conserved in the viral egt proteins. The LdMNPV protein sequence appears to include a signal peptide, which would allow the protein to be secreted into the haemolymph.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Riegel, Christopher I.; Lanner-Herrera, Carita; Slavicek, James M. 1994. Identification and characterization of the ecdysteroid UDPglucosyltransferase gene of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus. Journal of General Virology. 75: 829-838.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.