Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (297 KB)

Title: Grass invasion of a hardwood forest is associated with declines in belowground carbon pools

Author: Strickland, Michael S.; Devore, Jayna L.; Maerz, John C.; Bradford, Mark A.;

Date: 2010

Source: Global Change Biology 16(4):1338-1350

Publication Series: Scientific Journal (JRNL)

Description: Invasive plant species affect a range of ecosystem processes but their impact on belowground carbon (C) pools is relatively unexplored. This is particularly true for grass invasions of forested ecosystems. Such invasions may alter both the quantity and quality of forest floor inputs. Dependent on both, two theories, ‘priming’ and ‘preferential substrate utilization’, suggest these changes may decrease, increase, or leave unchanged native plant-derived soil C. Decreases are expected under ‘priming’ theory due to increased soil microbial activity. Under ‘preferential substrate utilization’, either an increase or no change is expected because the invasive plant's inputs are used by the microbial community instead of soil C. Here, we examine how Microstegium vimineum affects belowground C-cycling in a southeastern US forest. Following predictions of priming theory, M. vimineum's presence is associated with decreases in native-derived, C pools. For example, in September 2006 M. vimineum is associated with 24%, 34%, 36%, and 72% declines in total organic, particulate organic matter, mineralizable (a measure of microbially-available C), and microbial biomass C, respectively. Soil C derived from M. vimineum does not compensate for these decreases, meaning that the sum of native- plus invasive-derived C pools is smaller than native-derived pools in uninvaded plots. Supporting our inferences that C-cycling accelerates under invasion, the microbial community is more active per unit biomass: added 13C-glucose is respired more rapidly in invaded plots. Our work suggests that this invader may accelerate C-cycling in forest soils and deplete C stocks. The paucity of studies investigating impacts of grass invasion on C-cycling in forests highlights the need to study further M. vimineum and other invasive grasses to assess their impacts on C sink strength and forest fertility.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Strickland, Michael S.; Devore, Jayna L.; Maerz, John C.; Bradford, Mark A. 2010. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Global Change Biology 16(4):1338-1350.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.