Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (615 KB)

Title: Acute physiological stress and mortality following fire in a long-unburned longleaf pine ecosystem

Author: O’Brien, J.J.; Hiers, J.K.; Mitchell, R.J.; Varner, J.M. III; Mordecai, K.;

Date: 2010

Source: Fire Ecology 6(2)1-12

Publication Series: Scientific Journal (JRNL)

Description: One important legacy of fire exclusion in ecosystems dependent upon frequent fire is the development of organic soil horizons (forest floor) that can be colonized by fine roots. When fire is re-introduced, the forest floor is often consumed by fire and heavy overstory mortality, often delayed by months, results. We hypothesized that the delayed post-fire tree mortality is a manifestation of a cascade of physiological stresses initiated by root damage that can also magnify the impact of other kinds of damage. We investigated the physiological impact of forest floor consumption on longleaf pines (Pinus palustris Mill.) subjected to a wildfire in 2005 in a long-unburned (>50 years) forest by measuring forest floor consumption, whole tree water use, and leaf chlorophyll content. Ten of the 23 study trees died within three years post fire. Post-fire sap flux was unrelated to crown scorch, but was negatively correlated with forest floor consumption. A segmented linear regression revealed declines in sap flux until a threshold of 31 % forest floor consumption, after which further consumption had no additional effect on tree water use. Trees with >30 % forest floor consumption beneath their crowns were more than 20 times as likely to die as those with less consumption. Chlorophyll content in needles that flushed post fire was negatively correlated with crown scorch (R² = 0.60, P = 0.009) though all trees with scorch also experienced varying degrees of forest floor consumption. Our results suggest that the consumption of the forest floor with the likely concomitant loss of roots initiated a decline spiral, driven by an inability to supply sufficient water to the crown. Though we did not measure loss of stored carbohydrates in consumed roots directly, we infer that this likely effect, coupled with decreased crown photosynthetic capacity, eventually resulted in substantial overstory tree mortality.

Keywords: chlorophyll, crown scorch, duff, forest floor consumption, Pinus palustris, transpiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



O’Brien, J.J.; Hiers, J.K.; Mitchell, R.J.; Varner, J.M., III; Mordecai, K. 2010. In press. Acute physiological stress and mortality following fire in a long-unburned longleaf pine ecosystem. Fire Ecology 6(2)1-12.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.