Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (330 KB)

Title: Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics

Author: Strickland, M.S.; Callaham, M.A. Jr; Davies, C.A.; Lauber, C.L.; Ramirez, K.; Richter, D.D. Jr; Fierer, N.; Bradford, M.A.;

Date: 2010

Source: Soil Biology and Biochemistry 42:260-269

Publication Series: Scientific Journal (JRNL)

Description: Plant-derived carbon compounds enter soils in a number of forms; two of the most abundant being leaf litter and rhizodeposition. Our knowledge concerning the predominant controls on the cycling of leaf litter far outweighs that for rhizodeposition even though the constituents of rhizodeposits includes a cocktail of low molecular weight organic compounds which represent a rapidly cycling source of carbon, readily available to soil microbes. We determined the mineralization dynamics of a major rhizodeposit, glucose, and its relationship to land-use, microbial community and edaphic characteristics across a landscape in the southeastern United States. The landscape consists of cultivated, pasture, pine plantation, and hardwood forest sites (n ΒΌ 3). Mineralization dynamics were resolved in both winter and summer using an in situ 13C-glucose pulse-chase approach. Mineralization rates of the labeled glucose decline exponentially across the 72 h measurement periods. This pattern and absolute mineralization rates are consistent across seasons. An information-theoretic approach reveals that land-use is a moderately strong predictor of cumulative glucose mineralization. Measures assessing the size, activity, and/or composition of the microbial community were poor predictors of glucose mineralization. The strongest predictor of glucose mineralization was soil-extractable phosphorus. It was positively related to glucose mineralization across seasons and explained 60% and 48% of variation in cumulative glucose mineralization in the summer and winter, respectively. We discuss potential mechanisms underlying the relationship between soil phosphorus and glucose mineralization. Our results suggest that specific soil characteristics often related to land-use and/or land-management decisions may be strong predictors of glucose mineralization rates across a landscape. We emphasize the need for future research into the role of soil phosphorus availability and land-use history in determining soil organic carbon dynamics.

Keywords: Soil microbial communities, Root exudates, Low molecular weight compounds, Fungal-to-bacterial ratios, Land-use, Rhizosphere, Carbon cycling, Decomposition

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Strickland, M.S.; Callaham, M.A., Jr; Davies, C.A.; Lauber, C.L.; Ramirez, K.; Richter, D.D., Jr; Fierer, N.; Bradford, M.A. 2010. Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics. Soil Biology and Biochemistry 42:260-269.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.