Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB)

Title: Responses of oaks and tanoaks to the sudden oak death pathogen after 8 y of monitoring in two coastal California forests

Author: McPherson, Brice A.; Mori, Sylvia R.; Wood, David L.; Kelly, Maggi; Storer, Andrew J.; Svihra, Pavel; Standiford, Richard B.;

Date: 2010

Source: Forest Ecol. Manage 259(12): 2248-2255

Publication Series: Scientific Journal (JRNL)

Description: Sudden oak death, caused by Phytophthora ramorum, is widely established in mesic forests of coastal central and northern California. In 2000, we placed 18 plots in two Marin County sites to monitor disease progression in coast live oaks (Quercus agrifolia), California black oaks (Q. kelloggii), and tanoaks (Lithocarpus densiflorus), the species that are most consistently killed by the pathogen in these areas.Through early 2008, the numbers of newly infected trees increased for all species. The infection rate for trees that were asymptomatic in 2000 was 5.0% y−1 for coast live oaks, 4.1% y−1 for black oaks and 10.0% y−1 for tanoaks. Mortality rates were 3.1% y−1 for coast live oaks, 2.4% y−1 for black oaks, and 5.4% y−1 for tanoaks. Mortality not attributed to P. ramorum was 0.54% y−1 for coast live oaks, and 0.75% y−1 for tanoaks. Weibull survival models of trees that were asymptomatic in 2000 provided overall median survival times of 13.7 y for coast live oaks, 13.8 y for black oaks, and 8.8 y for tanoaks. Survival of infected (bleeding) trees declined to 9.7 y for coast live oaks, 6.2 y for black oaks, and 5.8 y for tanoaks. Ambrosia beetle attacks on bleeding trees further reduced modeled survival times by 65–80%, reaffirming the earlier finding that beetle attacks on bleeding cankers considerably reduce survival. Across all plots, the modeled time for 90% of trees that were asymptomatic in 2000 to become infected is 36.5 y for coast live oaks and 15.4 y for tanoaks. There was a trend toward higher infection rates as tree diameter increased. Greater than 90% of living coast live oaks that failed during the study had extensive beetle tunneling at the site of the break. Disease intensity in coast live oaks at the plot level was positively associated with bay laurel (Umbellularia californica) basal area and negatively associated with Pacific madrone (Arbutus menziesii) basal area. This study demonstrates the use of survival modeling to characterize the effects of epidemic disease on different species and to project the future of forests infected with tree pathogens.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


McPherson, Brice A.; Mori, Sylvia R.; Wood, David L.; Kelly, Maggi; Storer, Andrew J.; Svihra, Pavel; Standiford, Richard B. 2010. Responses of oaks and tanoaks to the sudden oak death pathogen after 8 y of monitoring in two coastal California forests. Forest Ecol. Manage 259(12): 2248-2255. doi:10.1016/j.foreco.2010.02.020.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.