Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions

Author: Carlis, DaNa L.; Chen, Yi-Leng; Morris, Vernon R.;

Date: 2010

Source: Monthly Weather Review 138 :2706-2736

Publication Series: Scientific Journal (JRNL)

Description: The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during July–August 2005. The model forecasts are validated by surface observations with good agreement.

In this study, it is shown that a previously known closed circulation over the Central Valley of Maui, or the Maui vortex, represents the northern cyclonic vortex of the dual-counter-rotating vortices in the lee of Haleakala, which extend up to the base of the trade wind inversion with a westerly reversed flow (.2 m s21). At low levels, the northern cyclonic vortex is more pronounced than the southern anticyclonic vortex. The asymmetric structure of the dual vortices is related to the shape of Haleakala and the flow deflection by the West Maui Mountains. The Maui vortex has a relatively narrow east–west extent in the lowest levels, especially at night, due to the deflected strong northerly/northeasterly winds from the windward foothills of the West Maui Mountains. Unlike the lee vortices off the leeside coast of the island of Hawaii, the Maui vortex and the westerly return flow in low levels are mainly over land and are strongly modulated by the diurnal heating cycle. In addition, the location and horizontal and vertical extent are affected by the trade wind speed and latent heat release.

Over the West Maui Mountains, with their height below the trade wind inversion, dual-counter-rotating vortices are present below the 1-km level in the wake, with strong downslope flow on the leeside slopes followed by a hydraulic jump. In the afternoon, downslope winds are weak, with combined westerly return/ sea-breeze flow along the leeside coast. Orographic blocking is also evident over eastern Molokai with strong downslope winds, especially at night.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Carlis, D.L.; Chen, Y.L.; Morris, V.R. 2010. Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions. Monthly Weather Review 138:2706-2736.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.