Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (409.0 KB bytes)

Title: Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California

Author: Grulke, N.E.; Minnich, R.A.; Paine, T.; Riggan, P.;

Date: 2010

Source: In: Pye, John M.; Rauscher, H. Michael; Sands, Yasmeen; Lee, Danny C.; Beatty, Jerome S., tech. eds. Advances in threat assessment and their application to forest and rangeland management. Gen. Tech. Rep. PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: 319-328

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest susceptibility to wildfires, as unfolded in the San Bernardino Mountains from 1999 to 2003. Air pollution, specifically ozone (O3), and wet and dry deposition of nitrogenous compounds from fossil fuel combustion, has significantly increased since industrialization of the region after WWII. Ozone and elevated nitrogen deposition cause specific changes in forest tree carbon, nitrogen, and water balance that enhance individual tree susceptibility to drought and bark beetle attack, and these changes contribute to whole ecosystem susceptibility to wildfire. For example, elevated O3 and N deposition increase leaf turnover rates and leaf and branch litter, and decrease decomposability of litter. Uncharacteristically, deep litter layers develop in mixed conifer forests affected by air pollutants. Elevated O3 and N deposition decrease the proportion of whole tree biomass in foliage and roots, the latter effect increasing tree susceptibility to drought and beetle attack. Because both foliar and root masses are compromised, carbohydrates are stored in the bole over winter. Elevated O3 increases drought stress by significantly reducing plant control of water loss. The resulting increase in canopy transpiration, combined with [O3 + N deposition]-induced decreases in root mass significantly increase tree susceptibility to drought stress, and when additionally combined with increased bole carbohydrates, perhaps all contribute to success of bark beetle attack. Phenomenological and experimental evidence is presented to support the role of these factors contributing to the susceptibility of forests to wildfire in southern California.

Keywords: Bark beetle, fire suppression, forest densification, N deposition, O3 exposure

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Grulke, N.E.; Minnich, R.A.; Paine,T.; Riggan, P. 2010. Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California. In: Pye, John M.; Rauscher, H. Michael; Sands, Yasmeen; Lee, Danny C.; Beatty, Jerome S., tech. eds. Advances in threat assessment and their application to forest and rangeland management. Gen. Tech. Rep. PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: 319-328.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.