Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (384 KB)

Title: Scale dependent inference in landscape genetics

Author: Cushman, Samuel A.; Landguth, Erin L.;

Date: 2010

Source: Landscape Ecology. 25: 967-979.

Publication Series: Scientific Journal (JRNL)

Description: Ecological relationships between patterns and processes are highly scale dependent. This paper reports the first formal exploration of how changing scale of research away from the scale of the processes governing gene flow affects the results of landscape genetic analysis. We used an individual-based, spatially explicit simulation model to generate patterns of genetic similarity among organisms across a complex landscape that would result given a stipulated landscape resistance model. We then evaluated how changes to the grain, extent, and thematic resolution of that landscape model affect the nature and strength of observed landscape genetic patternĀ­process relationships. We evaluated three attributes of scale including thematic resolution, pixel size, and focal window size. We observed large effects of changing thematic resolution of analysis from the stipulated continuously scaled resistance process to a number of categorical reclassifications. Grain and window size have smaller but statistically significant effects on landscape genetic analyses. Importantly, power in landscape genetics increases as grain of analysis becomes finer. The analysis failed to identify the operative grain governing the process, with the general pattern of stronger apparent relationship with finer grain, even at grains finer than the governing process. The results suggest that correct specification of the thematic resolution of landscape resistance models dominates effects of grain and extent. This emphasizes the importance of evaluating a range of biologically realistic resistance hypotheses in studies to associate landscape patterns to gene flow processes.

Keywords: landscape genetics, scale, grain, extent, thematic resolution, gradient, pattern, process, gene flow, simulation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Cushman, Samuel A.; Landguth, Erin L. 2010. Scale dependent inference in landscape genetics. Landscape Ecology. 25: 967-979.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.