Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (459 KB)

Title: Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

Author: Nilsen, E.T.; Lei, T.T.; Semones, S.W.;

Date: 2009

Source: International Journal of Plant Sciences 170(6):735-747

Publication Series: Scientific Journal (JRNL)

Description: We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s lightflecks, and lowest for 50- and 75-s lightflecks. For the 400-s lightflecks only, maximum A and total CO2 accumulated were significantly lower for seedlings in forest patches with shrubs present (SF) than for seedlings in forest patches without shrubs (F). These effects were found only when Awas calculated on a leaf-area basis because the specific leaf area of seedlings in F patches was 16% lower than it was for seedlings in SF patches. Photosynthesis reached 50% induction in 159 s for seedlings in F patches compared with 226 s for seedlings in SF patches. The faster induction of A for seedlings in F patches resulted in a significantly higher lightfleck use efficiency than for seedlings in SF patches. The inefficient use of lightflecks by Q. rubra seedlings in SF patches may be a primary mechanism by which Q. rubra seedlings are inhibited by subcanopy thickets of R. maximum.

Keywords: dynamic photosynthesis, sunfleck responses, transient light, advance regeneration, deciduous forest, Quercus rubra, Rhododendron maximum

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Nilsen, E.T.; Lei, T.T.; Semones, S.W. 2009. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present. International Journal of Plant Sciences 170(6):735-747.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.