Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB)

Title: Estimation of real-time N load in surface water using dynamic data driven application system

Author: Ouyang, Y.; Luo, S.M.; Cui, L.H.; Wang, Q.; Zhang, J.E.;

Date: 2011

Source: Ecological Engineering 37:616-621

Publication Series: Scientific Journal (JRNL)

Description: Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations of nutrients in surface water ecosystems due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health or instantaneous outbreaks such as algal blooms, timely water-quality information is very critical. In this study,wedeveloped anewparadigm of a dynamic data-driven application system (DDDAS) for estimating the real-time loads of nitrogen (N) in a surface water ecosystem. This DDDAS consisted of the following components: (1) a Visual Basic (VB) program for downloading US Geological Survey real-time chlorophyll and discharge data from the internet; (2) a STELLA model for evaluating real-time N loads based on the relationship between chlorophyll and N as well as on river discharge; (3) a batch file for linking the VB program and STELLA model; and (4) a Microsoft Windows Scheduled Task wizard for executing the model and displaying outputs on a computer screen at selected schedules. The DDDAS was validated using field measurements with a very good agreement prior to its applications. Results show that the real-time loads of TN (total N) and NOx (nitrate and nitrite) varied from positive to negative with the maximums of 1727 kg/h TN and 118 kg/h NOx and the minimums of −2483 kg/h TN and −168 kg/h NOx at the selected site. The negative loads occurred because of the back flow of the river in the estuarine environment. Our study suggests that the DDDAS developed in this study was feasible for estimating the real-time variations of TN and NOx in the surface water ecosystem.

Keywords: DDDAS, Nutrients, Real-time River, Water quality

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ouyang, Y.; Luo, S.M.; Cui, L.H.; Wang, Q.; Zhang, J.E. 2011. Estimation of real-time N load in surface water using dynamic data driven application system. Ecological Engineering 37:616-621.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.