Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.2 MB)

Title: Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests

Author: Duane, Maureen V.; Cohen, Warren B.; Campbell, John L.; Hudiburg, Tara; Turner, David P.; Weyermann, Dale.;

Date: 2010

Source: Forest Science. 56(4): 405-416

Publication Series: Scientific Journal (JRNL)

Description: Empirical models relating forest attributes to remotely sensed metrics are widespread in the literature and underpin many of our efforts to map forest structure across complex landscapes. In this study we compared empirical models relating Landsat reflectance to forest age across Oregon using two alternate sets of ground data: one from a large (n ~ 1500) systematic forest inventory and another from a smaller set of plots (n < 50) deliberately selected to represent pure conditions along predefined structural gradients. Models built with the smaller set of targeted ground data resulted in lower plot-level mapping error (root mean square error) and higher apparent explanatory power (R2) than those built with the larger, more widely distributed inventory data. However, in two of the three ecoregions considered, predictions derived from models built with the smaller ground data set displayed a bias relative to those built with the larger but noisier inventory data. A modeling exercise, wherein mapped forest age was translated into carbon, demonstrated how nonlinear ecological models can magnify these prediction biases over landscapes. From this study, it is clear that for mapping purposes, inventory data are superior to project-specific data sets if those data sets are not representative of the full region over which mapping is to be done.

Keywords: sampling methodology, remote sensing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Duane, Maureen V.; Cohen, Warren B.; Campbell, John L.; Hudiburg, Tara; Turner, David P.; Weyermann, Dale. 2010. Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests. Forest Science. 56(4): 405-416.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.