Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.2 MB)

Title: Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests

Author: McCulloh, Katherine; Sperry, John S.; Lachenbruch, Barbara; Meinzer, Frederick D.; Reich, Peter B.; Voelker, Steven;

Date: 2010

Source: New Phytologist. 186: 439-450

Publication Series: Scientific Journal (JRNL)

Description: Coniferous, diffuse-porous and ring-porous trees vary in their xylem anatomy, but the functional consequences of these differences are not well understood from the scale of the conduit to the individual. Hydraulic and anatomical measurements were made on branches and trunks from 16 species from temperate and tropical areas, representing all three wood types. Scaling of stem conductivity (Kh) with stem diameter was used to model the hydraulic conductance of the stem network. Ring-porous trees showed the steepest increase in Kh with stem size. Temperate diffuse-porous trees were at the opposite extreme, and conifers and tropical diffuse-porous species were intermediate. Scaling of Kh was influenced by differences in the allometry of conduit diameter (taper) and packing (number per wood area) with stem size. The Kh trends were mirrored by the modeled stem-network conductances. Ring-porous species had the greatest network conductance and this value increased isometrically with trunk basal area, indicating that conductance per unit sapwood was independent of tree size. Conductances were lowest and most size-dependent in conifers. The results indicate that differences in conduit taper and packing between functional types propagate to the network level and have an important influence on metabolic scaling concepts.

Keywords: hydraulic architecture, hydraulic conductivity, vessels, tracheids, conduit frequency, hydraulic efficiency

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


McCulloh, Katherine; Sperry, John S.; Lachenbruch, Barbara; Meinzer, Frederick D.; Reich, Peter B.; Voelker, Steven. 2010. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytologist. 186: 439-450.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.