Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.9 MB)

Title: Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data

Author: Kim, Sooyoung; McGaughey, Robert J.; Andersen, Hans-Erik; Schreuder, Gerard.;

Date: 2009

Source: Remote Sensing of Environment. 113: 1575-1586

Publication Series: Scientific Journal (JRNL)

Description: Tree species identification is important for a variety of natural resource management and monitoring activities including riparian buffer characterization, wildfire risk assessment, biodiversity monitoring, and wildlife habitat assessment. Intensity data recorded for each laser point in a LIDAR system is related to the spectral reflectance of the target material and thus may be useful for differentiating materials and ultimately tree species. The aim of this study is to test if LIDAR intensity data can be used to differentiate tree species. Leaf-off and leaf-on LIDAR data were obtained in the Washington Park Arboretum, Seattle, Washington, USA. Field work was conducted to measure tree locations, tree species and heights, crown base heights, and crown diameters of individual trees for eight broad leaved species and seven coniferous species. LIDAR points from individual trees were identified using the field-measured tree location. Points from adjacent trees within a crown were excluded using a procedure to separate crown overlap, Mean intensity values of laser returns within individual tree crowns were compared between species. We found that the intensity values for different species were related not only to reflective properties of the vegetation, but also to a presence or absence of foliage and the arrangement of foliage and branches within individual tree crowns. The classification results for broad leaved and coniferous species using linear discriminant function with a cross validation suggests that the classification rate was higher using leaf-off data (83.4%) than using leaf-on data (73.1%), with highest (90.6%) when combining these two LIDAR data sets. The result also indicates that different ranges of intensity values between two LIDAR datasets didn't affect the result of discriminant functions. Overall results indicate that some species and species groups can be differentiated using LIDAR intensity data and implies the potential of combining two LIDAR datasets for one study.

Keywords: LIDAR intensity, tree crown separation, species differentation

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Kim, Sooyoung; McGaughey, Robert J.; Andersen, Hans-Erik; Schreuder, Gerard. 2009. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sensing of Environment. 113: 1575-1586.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.