Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (5.2 MB)

Title: Relationship between LiDAR-derived forest canopy height and Landsat images

Author: Pascual, Cristina; Garcia-Abril, Antonio; Cohen, Warren B.; Martin-Fernandez, Susana.;

Date: 2010

Source: International Journal of Remote Sensing. 31(5): 1261-1280

Publication Series: Scientific Journal (JRNL)

Description: The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral indices were obtained from three Landsat scenes. The mean, median, SD and coefficient of variation (CV) of LiDAR canopy height measurements were calculated in 30-m square blocks corresponding with Landsat Enhanced Thematic Mapper Plus (ETM+) pixels. Correlation and forward stepwise regression analysis was applied to these data sets. Mean and median LiDAR height versus normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), normalized burn ratio (NBR) and wetness Tasseled Cap showed the best correlation coefficients (R2 ranging between -0.62 and -0.76). Nineteen regression models were obtained (R2 = 0.65-0.70). These results show that LiDAR-derived canopy height may be associated with Landsat spectral indices. This approach is of interest in sustainable forest management, although further research is required to improve accuracy.

Keywords: LiDAR, Landsat, forest structure

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Pascual, Cristina; Garcia-Abril, Antonio; Cohen, Warren B.; Martin-Fernandez, Susana. 2010. Relationship between LiDAR-derived forest canopy height and Landsat images. International Journal of Remote Sensing. 31(5): 1261-1280.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.