Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (275 KB)

Title: Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity

Author: Meehan, Timothy D.; Crossley, Michael S.; Lindroth, Richard L.;

Date: 2010

Source: Soil Biology & Biochemistry. 42: 1132-1137.

Publication Series: Scientific Journal (JRNL)

Description: Human alteration of atmospheric composition affects foliar chemistry and has possible implications for the structure and functioning of detrital communities. In this study, we explored the impacts of elevated carbon dioxide and ozone on aspen (Populus tremuloides) leaf litter chemistry, earthworm (Lumbricus terrestris) individual consumption and growth, and springtail (Sinella curviseta) population growth. We found that elevated carbon dioxide reduced nitrogen and increased condensed-tannin concentrations in leaf litter. These changes were associated with decreases in earthworm individual growth, earthworm growth efficiency, and springtail population growth. Elevated ozone increased fiber and lignin concentrations of leaf litter. These changes were not associated with earthworm consumption or growth, but were associated with increased springtail population growth. Our results suggest that changes in litter chemistry caused by increased carbon dioxide concentrations will have negative impacts on the productivity of diverse detritivore taxa, whereas those caused by increased ozone concentrations will have variable, taxon-specific effects.

Keywords: aspen, carbon dioxide, collembola, decomposition, earthworm, growth, leaf litter, ozone, soil

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Meehan, Timothy D.; Crossley, Michael S.; Lindroth, Richard L. 2010. Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity. Soil Biology & Biochemistry. 42: 1132-1137.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.