Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.9 MB)

Title: Xylem anisotropy and water transport--a model for the double sawcut experiment

Author: Schulte, Paul J.; Costa, David G.;

Date: 2010

Source: Tree Physiology. 30: 901-913

Publication Series: Scientific Journal (JRNL)

Description: Early experiments with overlapping cuts to the stems of trees demonstrated that lateral flow within the stem must be possible to allow such trees to maintain water flow to their leaves. We present a mathematical approach to considering lateral flow in stems by treating the xylem as an anisotropic medium for flow and develop an expression of its conductivity in the form of a tensor. In both 3D models of tracheid-bearing stems with cuts (incorporating this tensor analysis) and experimental stems with steadily deepening cuts, it is shown that flow can continue despite the presence of even strongly overlapping cuts through 90% of the stem. Such remaining conducting ability was, however, strongly dependent on values for radial and tangential conductivity (conductivity to lateral flow across the stem either radially with respect to the central axis or tangentially to the stem surface). Furthermore, the lateral flow around obstructing cuts was more dependent on tangential flow around the stem upstream and downstream of the cuts than on radial flow across the stem. The relative importance of tangential flow could be accounted for by a greater tangential conductivity, perhaps related to the predominance of pits on radial walls of tracheids, and the presence of non-conducting pith and early growth rings in the stems. These results demonstrate that a consideration of anisotropy in transport properties of the xylem will be important for future studies of flow in stems around naturally occurring geometric features such as branching points.

Keywords: anisotropic, conductivity, tensor, tracheid

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Schulte, Paul J.; Costa, David G. 2010. Xylem anisotropy and water transport--a model for the double sawcut experiment. Tree Physiology. 30: 901-913.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.