Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (445 KB)

Title: Modeling of multi-strata forest fire severity using Landsat TM data

Author: Meng, Q.; Meentemeyer, R.K.;

Date: 2011

Source: International Journal of Applied Earth Observation and Geoinformation. 13(1): 120-126

Publication Series: Scientific Journal (JRNL)

Description: Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which represents fire activities and ecological responses at different forest layers. In this study, using field measured fire severity across five forest strata of dominant tree, intermediate-sized tree, shrub, herb, substrate layers, and the aggregated measure of CBI as response variables, we fit statistical models with predictors of Landsat TM bands, Landsat derived NBR or dNBR, image differencing, and image ratioing data. We model multi-strata forest fire in the historical recorded largest wildfire in California, the Big Sur Basin Complex fire. We explore the potential contributions of the post-fire Landsat bands, image differencing, image ratioing to fire severity modeling and compare with the widely used NBR and dNBR. Models using combinations of post-fire Landsat bands perform much better than NBR, dNBR, image differencing, and image ratioing. We predict and map multi-strata forest fire severity across the whole Big Sur fire areas, and find that the overall measure CBI is not optimal to represent multi-strata forest fire severity.

Keywords: fire severity, multi-strata, dNBR, heterogeneous landscapes, Landsat TM

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Meng, Q.; Meentemeyer, R.K. 2011. Modeling of multi-strata forest fire severity using Landsat TM data. International Journal of Applied Earth Observation and Geoinformation. 13(1): 120-126.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.