Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.5 MB)

Title: Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990-2030)

Author: Meentemeyer, R.K.; Cunniffe, N.J.; Cook, A.R.; Filipe, J.A.N.; Hunter, R.D.; Rizzo, D.M.; Gilligan, C.A.;

Date: 2011

Source: Ecosphere 2(2): Article 17

Publication Series: Scientific Journal (JRNL)

Description: The spread of emerging infectious diseases (EIDs) in natural environments poses substantial risks to biodiversity and ecosystem function. As EIDs and their impacts grow, landscape- to regional-scale models of disease dynamics are increasingly needed for quantitative prediction of epidemic outcomes and design of practicable strategies for control. Here we use spatio-temporal, stochastic epidemiological modeling in combination with realistic geographical modeling to predict the spread of the sudden oak death pathogen (Phytophthora ramorum) through heterogeneous host populations in wildland forests, subject to fluctuating weather conditions. The model considers three stochastic processes: (1) the production of inoculum at a given site; (2) the chance that inoculum is dispersed within and among sites; and (3) the probability of infection following transmission to susceptible host vegetation. We parameterized the model using Markov chain Monte Carlo (MCMC) estimation from snapshots of local- and regional-scale data on disease spread, taking account of landscape heterogeneity and the principal scales of spread. Our application of the model to Californian landscapes over a 40-year period (1990–2030), since the approximate time of pathogen introduction, revealed key parameters driving the spatial spread of disease and the magnitude of stochastic variability in epidemic outcomes. Results show that most disease spread occurs via local dispersal (<250 m) but infrequent long-distance dispersal events can substantially accelerate epidemic spread in regions with high host availability and suitable weather conditions. In the absence of extensive control, we predict a ten-fold increase in disease spread between 2010 and 2030 with most infection concentrated along the north coast between San Francisco and Oregon. Long-range dispersal of inoculum to susceptible host communities in the Sierra Nevada foothills and coastal southern California leads to little secondary infection due to lower host availability and less suitable weather conditions. However, a shift to wetter and milder conditions in future years would double the amount of disease spread in California through 2030. This research illustrates how stochastic epidemiological models can be applied to realistic geographies and used to increase predictive understanding of disease dynamics in large, heterogeneous regions.

Keywords: computational biology, emerging infectious disease, GIS, landscape epidemiology, Markov chain Monte Carlo, Phytophthora ramorum, spatial heterogeneity, species distribution model

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Meentemeyer, R.K.; Cunniffe, N.J.; Cook, A.R.; Filipe, J.A.N.; Hunter, R.D.; Rizzo, D.M.; Gilligan, C.A. 2011. Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990-2030). Ecosphere 2(2), Article 17: 24 p. doi:10.1890/ES10-00192.1.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.