Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (425 KB)

Title: Genetic effects on transpiration, canopy conductance, stomatal sensitivity to vapour pressure deficit, and cavitation resistance in loblolly pine

Author: Aspinwall, Michael J; King, John S; Domec, Jean-Christophe; McKeand, Steven E; Fikret, Isik;

Date: 2011

Source: Ecohydrology 4:168–182

Publication Series: Scientific Journal (JRNL)

Description: Physiological uniformity and genetic effects on canopy-level gas-exchange and hydraulic function could impact loblolly pine (Pinus taeda L.) plantation sustainability and ecosystem dynamics under projected changes in climate. Over a 1-year period, we examined genetic effects on mean and maximum mid-day canopy conductance (Gs, Gsmax) and transpiration (E, max-E) within a juvenile loblolly pine plantation composed of ‘genotypes’ (e.g. different genetic entries) from each of the three different genetic groups (clones, full-sibs, open-pollinated). We also compared reference canopy conductance (Gs-ref or Gs at a vapour pressure deficit (D) = 1 kPa), maximum E (Emax) in response to D, stomatal sensitivity to D, specific hydraulic conductivity (ks), and cavitation resistance among genotypes. Based on genetic and physiological principles, we hypothesized that (1) within genotypes, physiological uniformity will increase as inherent genetic diversity decreases and (2) genotypes with greater ks and higher canopy-level gas-exchange rates will be more sensitive to increases in D, and more susceptible to loss of ks. In our results, high- and low-genetic diversity genotypes showed no differences in E and Gs uniformity over time. However, E and max-E were significantly different among genotypes, and genotypes showed significant seasonal variability in Gs and Gsmax. Additionally, there were significant differences in Emax, Gs-ref, Gs sensitivity to D, and the pressure at which 50% loss of ks occurs (P50) among individual genotypes. We found no relationship between mean hydraulic conductivity parameters and overall Gs-ref or Gs sensitivity. However, the genotype full embolism point (P88) and loss of ks rate (LCrate) both showed a significant positive relationship with genotype Gs-ref during the spring, indicating that genotypes with higher Gs were less resistant to cavitation. Overall, genetic effects on canopy-level gas-exchange and cavitation resistance were significant, implying that physiological differences among genotypes might affect stand water use, carbon gain, drought tolerance, and hydrologic processes. Contrary to our expectations, uniformity in physiological process rates did not increase as inherent genetic diversity decreased, suggesting that clonal genotypes exhibit high physiological plasticity under plantation conditions. Lastly, our results imply that genotypes with higher spring-time gas-exchange rates may be more susceptible to catastrophic loss of ks. With changes in climate expected to continue, physiological differences among genotypes may affect loblolly pine plantation carbon and water cycling.

Keywords: climate change, clone, drought resistance, hydraulic conductivity, water use

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Aspinwall, Michael J.; King, John S.; Domec, Jean-Christophe; McKeand; Steven E.; Fikret, Isik 2011. Genetic effects on transpiration, canopy conductance, stomatal sensitivity to vapour pressure deficit, and cavitation resistance in loblolly pine. Ecohydrology 4:168–182.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.