Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.0 MB)

Title: Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation

Author: Aspinwall, Michael J.; King, John S.; McKeand, Steven E.; Domec, Jean-Christophe;

Date: 2011

Source: Tree Physioology 31:78-91

Publication Series: Scientific Journal (JRNL)

Description: Variation in leaf-level gas exchange among widely planted genetically improved loblolly pine (Pinus taeda L.) genotypes could impact stand-level water use, carbon assimilation, biomass production, C allocation, ecosystem sustainability and biogeochemical cycling under changing environmental conditions. We examined uniformity in leaf-level light-saturated photosynthesis (Asat), stomatal conductance (gs), and intrinsic water-use efficiency (Asat/gs or δ) among nine loblolly pine genotypes (selected individuals): three clones, three full-sib families and three half-sib families, during the early years of stand development (first 3 years), with each genetic group possessing varying amounts of inherent genetic variation. We also compared light- and CO2-response parameters between genotypes and examined the relationship between genotype productivity, gas exchange and photosynthetic capacity. Within full-sib, half-sib and clonal genotypes, the coefficient of variation (CV) for gas exchange showed no consistent pattern; the CV for gs and δ was similar within clonal (44.3–46.9 and 35.5–38.6%) and halfsib (41.0–49.3 and 36.8–40.9%) genotypes, while full-sibs showed somewhat higher CVs (46.9–56.0 and 40.1–45.4%). In contrast, the CVs for Asat were generally higher within clones. With the exception of δ, differences in gas exchange among genotypes were generally insignificant. Tree volume showed a significant positive correlation with Asat and δ, but the relationship varied by season. Individual-tree volume and genotype volume were positively correlated with needle dark respiration (Rd). Our results suggest that uniformity in leaf-level physiological rates is not consistently related to the amount of genetic variation within a given genotype, and δ, Asat and Rd were the leaf-level physiological parameters that were most consistently related to individual-tree and genotype productivity. An enhanced understanding of molecular and environmental factors that influence physiological variation within and between loblolly pine genotypes may improve assessments of genotype growth potential and sensitivity to global climate change.

Keywords: gas exchange, genetic variation, photosynthesis, productivity, water use.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Aspinwall, Michael J.; King, John S.; McKeand, Steven E.; Domec, Jean-Christophe 2011. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation. Tree Physioology 31:78-91.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.