Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (954 KB)

Related Research Highlights

Picture of ForWarn Monitors Forests Coast-to-Coast
ForWarn Monitors Forests Coast-to-Coast

Title: Parallel k-Means Clustering for Quantitative Ecoregion Delineation Using Large Data Sets

Author: Kumar, Jitendra; Mills, Richard T.; Hoffman, Forrest M; Hargrove, William W;

Date: 2011

Source: Procedia Computer Science 4:1602-1611

Publication Series: Scientific Journal (JRNL)

Description: Identification of geographic ecoregions has long been of interest to environmental scientists and ecologists for identifying regions of similar ecological and environmental conditions. Such classifications are important for predicting suitable species ranges, for stratification of ecological samples, and to help prioritize habitat preservation and remediation efforts. Hargrove and Hoffman [1, 2] have developed geographical spatio-temporal clustering algorithms and codes and have successfully applied them to a variety of environmental science domains, including ecological regionalization; environmental monitoring network design; analysis of satellite-, airborne-, and ground-based remote sensing, and climate model-model and model-measurement intercomparison. With the advances in state-of-the-art satellite remote sensing and climate models, observations and model outputs are available at increasingly high spatial and temporal resolutions. Long time series of these high resolution datasets are extremely large in size and growing. Analysis and knowledge extraction from these large datasets are not just algorithmic and ecological problems, but also pose a complex computational problem. This paper focuses on the development of a massively parallel multivariate geographical spatio-temporal clustering code for analysis of very large datasets using tens of thousands processors on one of the fastest supercomputers in the world.

Keywords: ecoregionalization, k-means clustering, data mining, high performance computing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Kumar, Jitendra; Mills, Richard T.; Hoffman, Forrest M.; Hargrove, William W 2011. Parallel k-Means Clustering for Quantitative Ecoregion Delineation Using Large Data Sets. Procedia Computer Science 4:1602-1611.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.