Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (259 KB)

Title: Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

Author: Valaitis, Algimantas P.; Jenkins, Jeremy L.; Lee, Mi Kyong; Dean, Donald H.; Garner, Karen J.;

Date: 2001

Source: Archives of Insect Biochemistry and Physiology. 46: 186-200.

Publication Series: Scientific Journal (JRNL)

Description: BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were futile, but it was degraded by proteases with broad specificity indicating the presence of a peptide. Carbohydrate was detected by labeling with digoxigenin hydrazide following periodate oxidation. Mild alkaline hydrolysis destroyed toxin and antibody binding, suggesting O-linked glycans are involved in the activity. GC/MS composition analysis showed that the predominant sugars were galactose, glucose, and N-acetyl galactosamine with lesser amounts of N-acetyl glucosamine, glucuronic acid, xylose, and fucose. The carbohydrate moiety accounted for 73% of its total mass. Amino acid analysis showed a high content of aspartic/asparagine, threonine, and serine residues in the protein moiety. The purified glycoconjugate was not visualized using Coomassie or silver staining procedures, but stained "blue" using the cationic dye Stains-all. BTR-270 was labeled with biotin and used as a diagnostic probe for screening and identifying toxins that bind to the receptor. Toxin-binding kinetics obtained using a biosensor demonstrated that the receptor binds Cry1Aa and Cry1Ab toxins with high affinity, and displays a weaker affinity for Cry1Ac, in correlation with the toxicity of these toxins towards gypsy moth.

Keywords: gypsy moth, BTR-270, Bacillus thuringiensis Cry1A toxin receptor

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Valaitis, Algimantas P.; Jenkins, Jeremy L.; Lee, Mi Kyong; Dean, Donald H.; Garner, Karen J. 2001. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Archives of Insect Biochemistry and Physiology. 46: 186-200.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.