Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.1 MB)

Title: Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints

Author: Richardson, Andrew D.; Williams, Mathew; Hollinger, David Y.; Moore, David J.P.; Dail, D. Bryan; Davidson, Eric A.; Scott, Neal A.; Evans, Robert S.; Hughes, Holly.;

Date: 2010

Source: Oecologia. 164: 25-40.

Publication Series: Scientific Journal (JRNL)

Description: We conducted an inverse modeling analysis, using a variety of data streams (tower-based eddy covariance measurements of net ecosystem exchange, NEE, of CO2, chamber-based measurements of soil respiration, and ancillary ecological measurements of leaf area index, litterfall, and woody biomass increment) to estimate parameters and initial carbon (C) stocks of a simple forest C-cycle model, DALEC, using Monte Carlo procedures. Our study site is the spruce-dominated Howland Forest AmeriFlux site, in central Maine, USA. Our analysis focuses on: (1) full characterization of data uncertainties, and treatment of these uncertainties in the parameter estimation; (2) evaluation of how combinations of different data streams influence posterior parameter distributions and model uncertainties; and (3) comparison of model performance (in terms of both predicted fluxes and pool dynamics) during a 4-year calibration period (1997-2000) and a 4-year validation period ("forward run", 2001-2004). We find that woody biomass increment, and, to a lesser degree, soil respiration, measurements contribute to marked reductions in uncertainties in parameter estimates and model predictions as these provide orthogonal constraints to the tower NEE measurements. However, none of the data are effective at constraining fine root or soil C pool dynamics, suggesting that these should be targets for future measurement efforts. A key finding is that adding additional constraints not only reduces uncertainties (i.e., narrower confidence intervals) on model predictions, but at the same time also results in improved model predictions by greatly reducing bias associated with predictions during the forward run.

Keywords: Carbon cycle, Data-model fusion, Eddy covariance, Howland Forest, Inverse modeling, Parameter estimation, Uncertainty

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Richardson, Andrew D.; Williams, Mathew; Hollinger, David Y.; Moore, David J.P.; Dail, D. Bryan; Davidson, Eric A.; Scott, Neal A.; Evans, Robert S.; Hughes, Holly. 2010. Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints. Oecologia. 164: 25-40.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.