Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.3 MB)

Title: Seasonal patterns of climate controls over nitrogen fixation by Alnus viridis subsp

Author: Mitchell, Jennifer S.; Ruess, Roger W.;

Date: 2009

Source: Ecoscience. 16(3): 341-351

Publication Series: Scientific Journal (JRNL)

Description: Patterns of and controls over N2 fixation by green alder were studied in post-fire, mid-succession, and white spruce upland forests in interior Alaska, focusing on the hypothesis that ecosystem-level nitrogen (N) inputs decrease with successional development. N2-fixation rates tracked plant phenology during the 1997 (drought) and 1998 (normal precipitation) growing seasons. The best model for predicting acetylene reductase activity (ARA) across all stands and sampling periods included a linear response to soil temperature and a quadratic response to Julian day. There were few significant relationships between seasonal maximum values for ARA and measured leaf traits; however, we did detect an inverse correlation between foliar N to P ratio and seasonal maximum ARA. During 1998, stands with higher maximum ARA had higher soil %N, and maximum ARA was positively correlated with subcanopy %P in 0 and A soil horizons. During 1997, leaf %P and N resorption were lower and leaves were thinner compared to 1998. Drought effects were most pronounced in mid-succession, where alder exhibited reduced ARA, leaf %P, leaf thickness, and lower leaf resorption of P and N. Although ARA and nodule biomass did not differ among stand types, increases in alder densities with successional time translated to increasing ecosystem-level N inputs across the chronosequence. These results contradict established theory predicting a decline in N2-fixation rates and N2-fixer abundance during successional stand development.

Keywords: alder, boreal, nitrogen cycling, nitrogen fixation, succession

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Mitchell, Jennifer S.; Ruess, Roger W. 2009. Seasonal patterns of climate controls over nitrogen fixation by Alnus viridis subsp. fruiticosa in a secondary successional chronosequence in interior Alaska. Ecoscience. 16(3): 341-351.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.