Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.1 MB)

Title: Comparing five modelling techniques for predicting forest characteristics

Author: Moisen, Gretchen G.; Frescino, Tracey S.;

Date: 2002

Source: Ecological Modelling. 157: 209-225.

Publication Series: Miscellaneous Publication

Description: Broad-scale maps of forest characteristics are needed throughout the United States for a wide variety of forest land management applications. Inexpensive maps can be produced by modelling forest class and structure variables collected in nationwide forest inventories as functions of satellite-based information. But little work has been directed at comparing modelling techniques to determine which tools are best suited to mapping tasks given multiple objectives and logistical constraints. Consequently, five modelling techniques were compared for mapping forest characteristics in the Interior Western United States. The modelling techniques included linear models (LMs), generalized additive models (GAMs), classification and regression trees (CARTs), multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs). Models were built for two discrete and four continuous forest response variables using a variety of satellite-based predictor variables within each of five ecologically different regions. All techniques proved themselves workable in an automated environment. When their potential mapping ability was explored through simulations, tremendous advantages were seen in use of MARS and ANN for prediction over LMs, GAMs, and CART. However, much smaller differences were seen when using real data. In some instances, a simple linear approach worked virtually as well as the more complex models, while small gains were seen using more complex models in other instances. In real data runs, MARS and GAMS performed (marginally) best for prediction of forest characteristics.

Keywords: predictive mapping, forest inventory, classification tree, regression tree, mulivariate adaptive regression spline, MARS, artificial neural network

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Moisen, Gretchen G.; Frescino, Tracey S. 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling. 157: 209-225.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.