Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (826 KB)

Title: VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS

Author: Warneke, C.; Roberts, J. M.; Veres, P.; Gilman, J.; Kuster, W. C.; Burling, I.; Yokelson, R.; de Gouw, J. A.;

Date: 2011

Source: International Journal of Mass Spectrometry. 303: 6-14.

Publication Series: Miscellaneous Publication

Description: Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly increases with mass, because the ion trap mass spectrometer used in PIT-MS is more efficient for higher masses, whereas the quadrupole in PTR-MS is most efficient around 70 amu. The identification of VOCs in the complicated mix of the fire emissions was done by gas chromatographic pre separation and inter-comparison with other instrumentation: GC-MS, FTIR, and NI-PT-CIMS. With these state of the art identification methods only 50-75% of the mass detectable by PTR-MS or PIT-MS could be identified. The amount of identified material was dependent on the type of fuel used and the phase of the burns, more can be identified in the flaming stage of the fire. Compounds with masses above 100amu contributed the largest fraction of the unidentified mass. Emission ratios with CO for all identified and unidentified compounds were determined. Small oxygenated VOCs had the highest emission ratios of the observed compounds.

Keywords: VOC identification, PTR-MS, inter-comparison, biomass burning

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Warneke, C.; Roberts, J. M.; Veres, P.; Gilman, J.; Kuster, W. C.; Burling, I.; Yokelson, R.; de Gouw, J. A. 2011. VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS. International Journal of Mass Spectrometry. 303: 6-14.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.