Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (92 KB)

Title: Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape

Author: Keane, Robert; Loehman, Rachel;

Date: 2010

Source: American Geophysical Union. Fall Meeting: Abstract #NH33B-06.

Publication Series: Miscellaneous Publication

Description: Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be particularly sensitive to climatic change, and are likely to experience significant impacts under predicted future climate change conditions. Whitebark pine (Pinus albicaulis), a high-elevation five-needle pine species that is important for snowpack retention, resource provision, and other ecosystem services in alpine environments in the northern Rocky Mountains, is particularly sensitive to an interacting complex of disturbances - climatic change, altered fire regimes, white-pine blister rust, and mountain pine beetles - that have already caused major changes in species distribution and density. Further changes in abiotic and biotic conditions will likely pose additional threats to the success of this keystone alpine tree species. We used the mechanistic simulation model Fire-BGCv2 to assess potential interacting effects of climate changes, pathogens, and wildfire on the distribution and density of whitebark pine in a high-elevation watershed in Glacier National Park, Montana, USA. The FireBGCv2 modeling platform is uniquely structured to address questions of future species distribution in response to interacting disturbance agents; further, we integrated a range of potential future climate conditions derived from downscaled Global Circulation Models to examine multiple potential future climatic contexts. Our results show that the distribution of whitebark pine is severely reduced under potential future climates, and that increased fire frequency and severity resulting from warmer, drier conditions further reduces the presence of the species on the simulation landscape. Simulation model results highlight the sensitivity of whitebark pine to a complex suite of interacting disturbance agents, suggesting that conservation efforts must target these multiple threats. Furthermore, alternative predictive methods that do not account for multiple disturbance interactions may fail to capture the complex dynamics that drive whitebark pine distributions.

Keywords: biogeochemical cycles, processes, modeling, ecosystems, structure and dynamics, global change

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Keane, R. E.; Loehman, R. 2010. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape. American Geophysical Union. Fall Meeting: Abstract #NH33B-06.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.