Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (808 KB)

Title: Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

Author: van Haren, J.L.M.; de Oliveira, R.C.; Restrepo-Coupe, N.; Hutyra, L.; de Camargo, P. B.; Keller, Michael; Saleska, S.R.;

Date: 2010

Source: Journal of Geophysical Research-Biogeosciences. 115 (G03010): doi:10.1029/2009JG001231

Publication Series: Scientific Journal (JRNL)

Description: [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO2 flux variability. Soil N2O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%−196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N2O fluxes, accounting for more than twice the N2O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N2O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N2O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO2 and N2O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N2O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species‐specific patterns in CO2 and N2O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.

Keywords: greenhouse gases, Amazonia, N2O fluxes, CO2, N2O

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


van Haren, J.L.M.; de Oliveira, R.C.; Restrepo-Coupe, N.; Hutyra, L.; de Camargo, P. B.; Keller, M.; Saleska, S.R. 2010. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest? Journal of Geophysical Research-Biogeosciences. 115 (G03010): doi:10.1029/2009JG001231.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.