Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (383 KB)

Title: Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath-Siskiyou Mountains

Author: Donato, Daniel C.; Fontaine, Joseph B.; Campbell, John L.; Robinson, W. Douglas; Kauffman, J. Boone; Law, Beverly E.;

Date: 2009

Source: Canadian Journal of Forest Research. 39(4): 823-838.

Publication Series: Scientific Journal (JRNL)

Description: Large-scale wildfires (~104-106 ha) have the potential to eliminate seed sources over broad areas and thus may lead to qualitatively different regeneration dynamics than in small burns; however, regeneration after such events has received little study in temperate forests. Following a 200 000 ha mixed-severity wildfire in Oregon, USA, we quantified (1) conifer and broadleaf regeneration in stand-replacement patches 2 and 4 years postfire; and (2) the relative importance of isolation from seed sources (live trees) versus local site conditions in controlling regeneration. Patch-scale conifer regeneration density (72%-80% Douglas-fir (Pseudotsuga menziesii (Mirb). Franco)) varied widely, from 127 to 6494 stems·ha-1. Median densities were 1721 and 1603 stems·ha-1 2 and 4 years postfire, respectively, i.e., ~12 times prefire overstory densities (134 stems·ha-1). Because of the complex burn mosaic, ~58% of stand-replacement area was ≥200 m from a live-tree edge (seed source), and ~81% was ≥400 m. Median conifer density exceeded 1000 stems·ha-1 out to a distance of 400 m from an edge before declining farther away. The strongest controls on regeneration were distance to live trees and soil parent material, with skeletal coarse-grained soils supporting lower densities (133 stems·ha-1) than fine-grained soils (729-1492 stems·ha-1). Other site factors (e.g., topography, broadleaf cover) had little association with conifer regeneration. The mixed-severity fire pattern strongly influenced the regeneration process by providing seed sources throughout much of the burned landscape.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Donato, Daniel C.; Fontaine, Joseph B.; Campbell, John L.; Robinson, W. Douglas; Kauffman, J. Boone; Law, Beverly E. 2009. Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath-Siskiyou Mountains. Canadian Journal of Forest Research. 39(4): 823-838.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.