Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.3 MB)

Title: Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota

Author: Wolter, Peter P.; Townsend, Phillip A.;

Date: 2011

Source:

Publication Series: Scientific Journal (JRNL)

Description: The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar in northern Minnesota and neighboring Ontario, Canada have increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered increased dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. We used partial least squares (PLS) regression to integrate different combinations of satellite sensor data including Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al., 2009), to determine the best combination of sensor data for estimating near species-level proportional forest composition (12 types: 10 species and 2 genera). Single-sensor and various multi-sensor PLS models showed distinct species-dependent sensitivities to relative basal area (BA), with Landsat variables showing greatest overall sensitivity. However, best results were achieved using a combination of data from all these sensors, with several C-band (Radarsat-1) and L-band (PALSAR) variables showing sensitivity to the composition and abundance of specific species. Pixel-level forest structure estimates derived from SPOT-5 data were generally more sensitive to conifer species abundance (especially white pine) than to hardwood species composition. Relative BA models accounted for 68% (jack pine) to 98% (maple spp.) of the variation in ground data with RMSE values between 2.46% and 5.65% relative BA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species relative BA estimates which ranged from 5.94% (jack pine) to 39.41% (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78%. Most notably, this approach facilitated discrimination of aspen from paper birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics in the Upper Midwest. We also demonstrate that PLS regression is an effective data fusion strategy for mapping composition of heterogeneous forests using satellite sensor data.

Keywords: Forest composition, Forest structure, Data fusion, Multi-sensor, SAR, Radarsat, PALSAR, SPOT, Landsat, Basal area, PLS, egression, Minnesota, Great Lakes

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Wolter, Peter P.; Townsend, Phillip A. 2011. Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota. Remote Sensing of Environment. 115: 671-691.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.