Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.3 MB)

Title: Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem

Author: O'Donnell, J.A.; Harden, J.W.; McGuire, A.D.; Romanovsky, V.E.;

Date: 2011

Source: Biogeosciences. 8: 1367-1382

Publication Series: Scientific Journal (JRNL)

Description: In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil moisture, and snow depth) and fire severity. We also conducted sensitivity analyses to explore the combined effects of fire-soil moisture interactions and snow seasonality on OC storage. OC losses were calculated as the difference in OC stocks after three fire cycles (~500 yr) following a prescribed step-change in climate and/or fire. Across single-factor scenarios, our findings indicate that warmer air temperatures resulted in the largest relative soil OC losses, whereas dry soil conditions alone (in the absence of wildfire) resulted in the smallest carbon losses. Across multiple climate factors, we observed larger OC losses than for single-factor scenarios. Soil climate was the dominant control on soil OC loss, governing the sensitivity of microbial decomposers to fluctuations in temperature and soil moisture; this control, in turn, is governed by interannual changes in active layer depth. Transitional responses of the active layer depth to fire regimes also contributed to OC losses, primarily by determining the proportion of OC into frozen and unfrozen soil layers.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



O'Donnell, J.A.; Harden, J.W.; McGuire, A.D.; Romanovsky, V.E. 2011. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem. Biogeosciences. 8: 1367-1382.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.