Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (488 KB)

Title: Leaf area index uncertainty estimates for model-data fusion applications

Author: Richardson, Andrew D.; Dail, D. Bryan; Hollinger, D.Y.;

Date: 2011

Source: Agriculture and Forest Meteorology. 151: 1287-1292.

Publication Series: Scientific Journal (JRNL)

Description: Estimates of data uncertainties are required to integrate different observational data streams as model constraints using model-data fusion. We describe an approach with which random and systematic uncertainties in optical measurements of leaf area index [LAI] can be quantified. We use data from a measurement campaign at the spruce-dominated Howland Forest AmeriFlux site for illustrative purposes. We made measurements along two transects (one in a mature stand, one in a recently harvested shelterwood) before sunset on successive days using both the Li-Cor LAI-2000 plant canopy analyzer and digital hemispherical photography (DHP). The random measurement uncertainty at a given point for a single measurement is about 5% for LAI-2000 and 10% for DHP. These uncertainties are small compared to potential systematic biases due to instrument calibration errors and data processing decisions, which are estimated to be 10-20% for each instrument. Sampling uncertainty (due to the spatial variability along each transect where we conducted our measurements) is an additional, but again relatively small, uncertainty. Assumptions about clumping parameters, for which standard literature values are typically used, remain large sources of uncertainty. This analysis can also be used to develop strategies to reduce measurement uncertainties.

Keywords: carbon cycle, data assimilation, error analysis, data-model fusion, leaf area index, uncertainty

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Richardson, Andrew D.; Dail, D. Bryan; Hollinger, D.Y. 2011. Leaf area index uncertainty estimates for model-data fusion applications. Agriculture and Forest Meteorology. 151: 1287-1292.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.