Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (217 KB)

Title: Age versus size determination of radial variation in wood specific gravity : lessons from eccentrics

Author: Williamson, G. Bruce; Wiemann, Michael C.;

Date: 2011

Source: Trees. Vol. 25, no. 4 (Aug. 2011): p. 585-591.

Publication Series: Scientific Journal (JRNL)

Description: Radial increases in wood specific gravity have been shown to characterize early successional trees from tropical forests. Here, we develop and apply a novel method to test whether radial increases are determined by tree age or tree size. The method compares the slopes of specific gravity changes across a short radius and a long radius of trees with eccentric trunks. If radial changes are determined by size, then the slope of the change should be the same on both radii. If radial changes are determined by age, then the slope should be greater on the short radius. For 30 trees from 12 species with eccentricity of at least 4%, the ratio of the slopes of the linear regressions of specific gravity on radial distance (short radius slope/long radius slope) was regressed on the ratio of radii lengths (long radius/short radius). The regression was highly significant, and the faster increase in specific gravity on the short radius was sufficient to compensate for the difference in radius lengths, so the specific gravity of wood along the short radius was equal to the specific gravity on the long radius at any given proportional distance on the radius. Therefore, trees that are producing xylem faster on one radius than another produce wood of comparable specific gravity on both radii at the same time, so radial increases in specific gravity are dependent on tree age, not tree size.

Keywords: Trees, tropics, specific gravity, wood density, anatomy, regression analysis, tree age, Costa Rica, wood anatomy, xylem, tropical woods, diameter, eccentric growth, tree eccentricity, radial gradients, tree age and size

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Williamson, G. Bruce; Wiemann, Michael C. 2011. Age versus size determination of radial variation in wood specific gravity : lessons from eccentrics. Trees. Vol. 25, no. 4 (Aug. 2011): p. 585-591.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.