Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.8 MB)

Related Research Highlights

Picture of Nationwide Datasets of Tree Species Distributions Created
NRS-2014-051
Nationwide Datasets of Tree Species Distributions Created

Title: A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data

Author: Wilson, B. Tyler; Lister, Andrew J.; Riemann, Rachel I.;

Date: 2012

Source: Forest Ecology and Management. 271: 182-198.

Publication Series: Scientific Journal (JRNL)

Description: The paper describes an efficient approach for mapping multiple individual tree species over large spatial domains. The method integrates vegetation phenology derived from MODIS imagery and raster data describing relevant environmental parameters with extensive field plot data of tree species basal area to create maps of tree species abundance and distribution at a 250-m pixel size for the entire eastern contiguous United States. The approach uses the modeling techniques of k-nearest neighbors and canonical correspondence analysis, where model predictions are calculated using a weighting of nearest neighbors based on proximity in a feature space derived from the model. The approach also utilizes a stratification derived from the 2001 National Land-Cover Database tree canopy cover layer. Data pre-processing is also described, which includes the use of Fourier series transformation for data reduction and characterizing seasonal vegetation phenology patterns that are apparent in the MODIS imagery.

Keywords: nearest-neighbor imputation, canonical correspondence analysis, MODIS, vegetation phenology, forest inventory, species distribution

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Wilson, B. Tyler; Lister, Andrew J.; Riemann, Rachel I. 2012. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Forest Ecology and Management. 271: 182-198.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.