Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (368 KB)

Title: Broadband nanoindentation of glassy polymers: Part I Viscoelasticity

Author: Jakes, Joesph E.; Lakes, Rod S.; Stone, Don S.;

Date: 2012

Source: J. Mater. Res.

Publication Series: Scientific Journal (JRNL)

Description: Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli generated from dynamic mechanical analysis and broadband viscoelastic spectroscopy but are 18-50% higher. Included in the developed protocols is an experimental method based on measured indent area to remove from consideration indents for which viscoplastic deformation takes place during unloading. Ancillary measurements of indent area and depth reveal no detectable (~1%) change in area between 200 s and 4.9 days following removal of indenter.

Keywords: broadband nanoindentation, viscoelasticity, polymer

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Jakes, Joseph E.; Lakes, Rod S.; Stone, Don S. 2012. Broadband nanoindentation of glassy polymers: Part I. Viscoelasticity. Journal of Materials Research. 27(2): 463-474.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.