Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (943 KB)

Title: The urban watershed continuum: evolving spatial and temporal dimensions

Author: Kaushal, Sujay S.; Belt, Kenneth T.;

Date: 2012

Source: Urban Ecosystems. 15: 409-435.

Publication Series: Scientific Journal (JRNL)

Description: Urban ecosystems are constantly evolving, and they are expected to change in both space and time with active management or degradation. An urban watershed continuum framework recognizes a continuum of engineered and natural hydrologic flowpaths that expands hydrologic networks in ways that are seldom considered. It recognizes that the nature of hydrologic connectivity influences downstream fluxes and transformations of carbon, contaminants, energy, and nutrients across 4 space and time dimensions. Specifically, it proposes that (1) first order streams are largely replaced by urban infrastructure (e.g. storm drains, ditches, gutters, pipes) longitudinally and laterally within watersheds, (2) there is extensive longitudinal and lateral modification of organic carbon and nutrient retention in engineered headwaters (3) there are longitudinal downstream pulses in material and energy exports that are amplified by interactive land-use and hydrologic variability, (4) there are vertical interactions between leaky pipes and ground water that influence stream solute transport, (5) the urban watershed continuum is a transformer and transporter of materials and energy based on hydrologic residence times, and (6) temporally, there is an evolution of biogeochemical cycles and ecosystem functions as land use and urban infrastructure change over time. We provide examples from the Baltimore Ecosystem Study Long-Term Ecological (LTER) site along 4 spatiotemporal dimensions. Long-term monitoring indicates that engineered headwaters increase downstream subsidies of nitrate, phosphate, sulfate, carbon, and metals compared with undeveloped headwaters. There are increased longitudinal transformations of carbon and nitrogen from suburban headwaters to more urbanized receiving waters. Hydrologic connectivity along the vertical dimension between ground water and leaky pipes from Baltimore’s aging infrastructure elevates stream solute concentrations. Across time, there has been increased headwater stream burial, evolving stormwater management, and long-term salinization of Baltimore’s drinking water supply. Overall, an urban watershed continuum framework proposes testable hypotheses of how transport/transformation ofmaterials and energy vary along a continuum of engineered and natural hydrologic flowpaths in space and time. Given interest in transitioning from sanitary to sustainable cities, it is necessary to recognize the evolving relationship between infrastructure and ecosystem function along the urban watershed continuum.

Keywords: land use change, sanitary city, urban sustainability, organic carbon, nitrogen, phosphorus, copper, lead, zinc, road salt, emerging contaminants, stream restoration, stormwater management, aging infrastructure

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.



Kaushal, Sujay S.; Belt, Kenneth T. 2012. The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosystems. 15: 409-435.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.