Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (342 KB)

Title: Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes

Author: Cushman, Samuel A.; Shirk, Andrew J.; Landguth, Erin L.;

Date: 2012

Source: Landscape Ecology. 27: 369-380.

Publication Series: Scientific Journal (JRNL)

Description: Little is known about how variation in landscape mosaics affects genetic differentiation. The goal of this paper is to quantify the relative importance of habitat area and configuration, as well as the contrast in resistance between habitat and non-habitat, on genetic differentiation. We hypothesized that habitat configuration would be more influential than habitat area in influencing genetic differentiation. Population size is positively related to habitat area, and therefore habitat area should affect genetic drift, but not gene flow. In contrast, differential rates and patterns of gene flow across a landscape should be related to habitat configuration. Using spatially explicit, individual-based simulation modeling, we found that habitat configuration had stronger relationships with genetic differentiation than did habitat area, but there was a high degree of confounding between the effects of habitat area and configuration. We evaluated the predictive ability of six widely used landscape metrics and found that patch cohesion and correlation length of habitat are among the strongest individual predictors of genetic differentiation. Correlation length, patch density and clumpy are the most parsimonious set of variables to predict the magnitude of genetic differentiation in complex landscapes.

Keywords: landscape genetics, area, configuration, fragmentation, limiting factors, CDPOP, simulation, thresholds

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Cushman, Samuel A.; Shirk, Andrew J.; Landguth, Erin L. 2012. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecology. 27: 369-380.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.