Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (308 KB)

Title: Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model

Author: Uzoh, Fabian C.C.; Oliver, William W.;

Date: 2008

Source: Forest Ecol. Manage. 256 (3), 438–445.

Publication Series: Scientific Journal (JRNL)

Description: A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index, and competition indices are included in the model as fixed effects in order to explain residual variability. The data set used in this study came from long-term permanent research plots in even-aged, pure stands both planted and of natural origin. The data base consists of six levels-of-growing stock studies supplemented by initial spacing and other permanent-plot thinning studies for a total of 310 plots, 34,263 trees and 153,854 observations. Regression analysis is the preferred technique used in growth and yield modeling in forestry. We choose the mixed effects models instead of the regression analysis approach because it allows for proper treatment of error terms in a repeated measures analysis framework. Regional growth and yield models exist for ponderosa pine. However, data collection and analysis procedures differ. As a result, comparisons of growth responses that may be due to geographic variation of the species are not possible. Our goal is to present a single distance-independent diameter increment model applicable throughout the geographic range of ponderosa pine in the United States and by using only data from long-term permanent plots on sites capable of the productivity estimated by Meyer [Meyer, W.H., 1938. Yield of Even-Aged Stands of Ponderosa Pine. US Department of Agriculture Technical Bulletin 630].

Keywords: Diameter growth, Tree-growth modeling, Mixed model, Repeated measures analysis, Pinus ponderosa

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Uzoh, Fabian C.C.; Oliver, William W., 2008. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecol. Manage. 256 (3), 438–445.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.