Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (1.9 MB)

Related Research Highlights

Picture of Production Costs of Poplar Energy Crops in the Great Lake States
NRS-2014-082
Production Costs of Poplar Energy Crops in the Great Lake States

Title: An approach for siting poplar energy production systems to increase productivity and associated ecosystem services

Author: Zalesny, Ronald S. Jr.; Donner, Deahn M.; Coyle, David R.; Headlee, William L.;

Date: 2012

Source: Forest Ecology and Management. 284: 45-58.

Publication Series: Scientific Journal (JRNL)

Description: Short rotation woody crops such as Populus spp. and their hybrids (i.e., poplars) are a significant component of the total biofuels and bioenergy feedstock resource in the USA. Production of these dedicated energy crops may result in large-scale land conversion, which leads to questions about their economic, logistic, and ecologic feasibility. To address such concerns, we used available social (i.e., land ownership and cover) and biophysical (i.e., climate and soil characteristics) spatial data to map eligible lands suitable for establishing and growing poplar biomass for bioenergy crops across Minnesota and Wisconsin, USA. We confirmed the validity of this mapping technique by sampling and assessing biotic variables within locations identified on the maps. Lastly, we estimated potential poplar productivity within identified areas using a process-based growth model (3-PG) to determine spatial distribution of productive lands across the study area. Overall, eligible lands suitable for poplar production systems totaled 373,630 ha across both states, representing 30.8% of the study area and a total potential aboveground yield at the end of a 10-year rotation of 36.2-42.6 dry Tg.

Keywords: 3-PG, biofuels, bioenergy, bioproducts, populus, productivity modeling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Zalesny, Ronald S., Jr.; Donner, Deahn M.; Coyle, David R.; Headlee, William L. 2012. An approach for siting poplar energy production systems to increase productivity and associated ecosystem services. Forest Ecology and Management. 284: 45-58.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.