Skip to page content
USDA Forest Service

Research & Development Treesearch

Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help - We Participate  Government Made Easy

Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (3.9 MB)

Title: Quantifying watershed surface depression storage: determination and application in a hydrologic model

Author: Amoah, Joseph K. O.; Amatya, Devendra M.; Nnaji, Soronnadi.;

Date: 2012


Publication Series: Scientific Journal (JRNL)

Description: Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfall–runoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity (DSC) in watersheds using digital elevation models (DEMs). The methodology includes implementing a lumped DSC model to extract geometric properties of storage elements from DEMs of varying grid resolutions and employing a consistency zone criterion to quantify the representative DSC of an isolated watershed. DSC obtained using the consistency zone approach is compared to DSC estimated by “brute force” (BF) optimization method. The BF procedure estimates optimal DSC by calibrating DRAINMOD, a quasi-process based hydrologic model, with observed streamflow under different climatic conditions. Both methods are applied to determine the DSC for relatively low-gradient coastal plain watersheds on forested landscape with slopes less than 3%. Results show robustness of the consistency zone approach for estimating depression storage. To test the adequacy of the calculated DSC values obtained, both methods are applied in DRAINMOD to predict the daily watershed flow rates. Comparison between observed and simulated streamflow reveals a marginal difference in performance between BF optimization and consistency zone estimated DSCs during wet periods, but the latter performed relatively better in dry periods. DSC is found to be dependent on seasonal antecedent moisture conditions on surface topography. The new methodology is beneficial in situations where data on depressional storage is unavailable for calibrating models requiring this input parameter.

Keywords: depressional storage capacity, DRAINMOD, consistency zone, surface storage, brute force optimization, digital elevation model

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.



Amoah, Joseph K. O.; Amatya, Devendra M.; Nnaji, Soronnadi. 2012. Quantifying watershed surface depression storage: determination and application in a hydrologic model. Hydrological Processes. DOI: 10.1002/hyp.9364.


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.