Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (0 bytes)

Title: Long-term effects of silviculture on soil carbon storage: does vegetation control make a difference?

Author: Powers, Robert F.; Busse, Matt D.; McFarlane, Karis J.; Zhang, Jianwei; Young, David H.;

Date: 2012

Source: Forestry. doi:10.1093/forestry/cps067

Publication Series: Scientific Journal (JRNL)

Description: Forests and the soils beneath them are Earth’s largest terrestrial sinks for atmospheric carbon (C) and healthy forests provide a partial check against atmospheric rises in CO2. Consequently, there is global interest in crediting forest managers who enhance C retention. Interest centres on C acquisition and storage in trees. Less is directed to understorey management practices that affect early forest development. Even less is paid to the largest ecosystem reservoir of all – the mineral soil. Understorey vegetation control is a common management practice to boost stand growth, but the consequence of this on ecosystem C storage is poorly understood. We addressed this by pooling data from five independent groups of long-term studies in the western US. Understorey control increased overstorey biomass universally, but C contents of the forest floor and top 30 cm of mineral soil largely were unaffected. Net soil C increment averaged 1.3 Mg C ha-1 year-1 in the first decade. We conclude that soil C storage is not affected adversely by vegetation management in forests under a Mediterranean climate. However, understorey shrubs can profoundly affect stand susceptibility to wildfire. We propose that C accounting systems be strengthened by assessing understorey management practices relative to wildfire risk.

Keywords: Soil carbon, understorey vegetation management, ponderosa pine

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Powers, Robert F.; Busse, Matt D.; McFarlane, Karis J.; Zhang, Jianwei; Young, David H. 2012. Long-term effects of silviculture on soil carbon storage: does vegetation control make a difference? Forestry. doi:10.1093/forestry/cps067.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.