Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (4.5 MB)

Title: WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

Author: Coen, Janice L.; Cameron, Marques; Michalakes, John; Patton, Edward G.; Riggan, Philip J.; Yedinak, Kara M.;

Date: 2012

Source: Journal of Applied Meteorology and Climatology. 52: 16-38

Publication Series: Scientific Journal (JRNL)

Description: A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties and local terrain gradients, to determine the fire spread rate and direction. Fuel consumption releases sensible and latent heat fluxes into the atmospheric model lowest layers, driving boundary layer circulations. The atmospheric model, configured in turbulence-resolving large eddy simulation mode, was used to explore the sensitivity of simulated fire characteristics such as perimeter shape, fire intensity, and spread rate to external factors known to influence fires such as fuel characteristics and wind speed and to explain how these external parameters affect the overall fire properties. Using theoretical environmental vertical profiles, a suite of experiments using conditions typical of the daytime convective boundary layer varied these external parameters around a control experiment. Results showed that simulated fires evolved into the expected bowed shape because of fire-atmosphere feedbacks that control airflow in and near fires. The coupled model reproduced expected differences in fire shapes and heading fire intensity between grass, shrub, and forest litter fuel types, the expected narrow, rapid spread in higher wind speeds, and moderate inhibition of fire spread in higher fuel moistures. The effects of fuel load were more complex: higher fuel loads increased the heat flux and fire plume strength, and thus inferred fire effects, but had limited impact on spread rate.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Coen, Janice L.; Cameron, Marques; Michalakes, John; Patton, Edward G.; Riggan, Philip J.; Yedinak, Kara M. 2012. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model. Journal of Applied Meteorology and Climatology. 51: 16-38.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.