Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

View PDF (2.0 MB)

Title: Complete genome sequence of Paenibacillus sp. strain JDR-2

Author: Chow, Virginia; Nong, Guang; St. John, Franz J.; Rice, John D.; Dickstein, Ellen; Chertkov, Olga; Bruce, David; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Pati, Amrita; Martin, Joel; Copeland, Alex; Land, Miriam L.; Goodwin, Lynne; Jones, Jeffrey B.; Ingram, Lonnie O.; Shanmugam, Keelnathan T.; Preston, James F.;

Date: 2012

Source: Standards in Genomic Sciences (2012) 6:1-10.

Publication Series: Scientific Journal (JRNL)

Description: Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

Keywords: aerobic, mesophile, Gram-positive, Paenibacillus, xylanolytic, xylan

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Chow, Virginia; Nong, Guang; St. John, Franz J.; Rice, John D.; Dickstein, Ellen; Chertkov, Olga; Bruce, David; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Pati, Amrita; Martin, Joel; Copeland, Alex; Land, Miriam L.; Goodwin, Lynne; Jones, Jeffrey B.; Ingram, Lonnie O.; Shanmugam, Keelnathan T.; Preston, James F. 2012. Complete genome sequence of Paenibacillus sp. strain JDR-2. Standards in Genomic Sciences. 6: 1-10.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.